
Suppose S is spanned by the vectors
$$(1, 2, 2, 3)$$
 and $(1, 3, 3, 2)$. Find two vectors that span S^{\perp} . This is the same as solving $Ax = 0$ for which A ?

Let $C = 1$
 $A = 0$
 $A = 0$

True or false?

(1, 1, 1) is perpendicular to (1, 1, -2) so the planes x + y + z = 0 and x + y - 2z = 0 are orthogonal subspaces.

For the given matrix, find the orthogonal complement of

- a) column space -> left hullspace
- b) row space null space

$$\begin{bmatrix} 3 & 1 & 2 \\ 5 & -2 & 1 \\ 1 & -4 & 3 \end{bmatrix}$$

Project the vector \boldsymbol{b} onto the line through \boldsymbol{a} . Check that \boldsymbol{e} is perpendicular to \boldsymbol{a} :

(a) $\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and $\boldsymbol{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (b) $\boldsymbol{b} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ and $\boldsymbol{a} = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$.

(b) $\boldsymbol{b} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ and $\boldsymbol{a} = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$.